Making sense of raw point-cloud data is difficult, and before the age of machine learning it traditionally required highly trained engineers to tediously specify which qualities they wanted to capture by hand. But in a new series of papers out of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), researchers show that they can use deep learning to automatically process point clouds for a wide range of 3D-imaging applications.
MIT News
http://news.mit.edu/2019/deep-learning-point-clouds-1021